If $\left( {p \wedge \sim q} \right) \wedge \left( {p \wedge r} \right) \to \sim p \vee q$ is false, then the truth values of $p, q$ and $r$ are respectively
$F, T, F$
$T, F, T$
$F, F, F$
$T, T, T$
The proposition $ \sim \left( {p\,\vee \sim q} \right) \vee \sim \left( {p\, \vee q} \right)$ is logically equivalent to
Negation of the statement $P$ : For every real number, either $x > 5$ or $x < 5$ is
$\left( {p \wedge \sim q \wedge \sim r} \right) \vee \left( { \sim p \wedge q \wedge \sim r} \right) \vee \left( { \sim p \wedge \sim q \wedge r} \right)$ is equivalent to-
Which of the following is always true
Which of the following Venn diagram corresponds to the statement “All mothers are women” ($M$ is the set of all mothers, $W$ is the set of all women)